Performance of Johnson Matthey EGRT™ Emission Control System for NOx and PM Emission Reduction in Retrofit Applications

Sougato Chatterjee, Raymond Conway & Satish Viswananthan
Johnson Matthey
Diesel Emission Control Systems

DEER 2002

Outline

- Introduction
- System Details
 - CRT Filter System
 - EGR System
- EGRT Applications
 - Emissions Performance
 - On-road Performance
- Conclusions

EGRT™ System

• EGRTTM = EGR + CRT[®]

 EGR = Re-circulation of part of the exhaust gas to engine air intake

- CRT = Continuously Regenerating Technology Diesel Particulate Filter
- Uses STT patented EGR technology in combination with JM patented CRT particulate filter

Objective of EGRT Retrofit on Current Engines

Continuously Regenerating Technology (CRT®)

CRT® Particulate Filter for >90% PM Removal

- Patented CO/HC/PM Emission Control System combining Oxidation Catalyst & Filter
- Engineered as a totally passive emission control system which requires no supplemental heat
- Uses NO₂ produced by a specially formulated catalyst to burn soot collected by the filter at typical operating temperatures of diesel engine exhaust
- Requires the use of Ultra Low Sulfur fuel for maximum emission reduction and filter regeneration

NO₂ Reaction in a CRT

CRT® Particulate Filter

Unique Patented Johnson Matthey System

Typical CRT Particulate Filter

Johnson Matthey CRT® System HDD FTP Test Results

	Test Engine			Percent	Reduction	in	Emissions
No.	MY	Make	Model	ТНС	CO	NOx	PM
1	1995	Cummins	M11	91	89	5	95
2	1999	Caterpillar	3126	88	99	8	88
3	1998	DDC	Series 60	95	94	(2)	87
4	1999	DDC	Series 50	100	72	6	90

EGR Technology

EGRT System

- EGR re-circulation of part of the exhaust gas to engine air intake
- Reduced oxygen and increased heat capacity of combustion mixture reduces NOx
- Current system is a low pressure EGR
 - Exhaust flow is taken post CRT filter
 - Reduces PM re-introduction into combustion chamber

Low pressure EGR system

- •Good controlability during transient conditions
- High EGR rates achievable under higher loads
- Less complex, better suitable for retrofit applications
- Low cooling capacity
- No engine contamination with soot

EGRT System

Low pressure EGR-system with CRT particulate filter

Used for OEM and retrofit installations

•For trucks, buses, and off-road machinery

- •Over 1200 installed on various engines
- Use Ultra Low Sulfur Diesel
- Reduction of legislated emissions

CO > 90 % HC > 90 % PM > 90 % $NO_x > 40 \%$

EGR Throttle Valve

EGR Control System

EGR Control Strategy

- EGR Map Define EGR flow as a function of engine speed & load conditions
- EGR map involves % EGR flow at each speed/load point based on critical parameters
- Critical parameters opacity, NOx/PM ratio, intake pressure, exhaust temperature
- Develop map based on JM model of CRT and EGR interaction
- Verify map by emissions testing

Effect of EGR on NOx and PM Emissions

EGRT Applications

Worldwide EGRT Applications

- Originally introduced in Sweden in 1998
- Over 1200 units installed in Sweden and Hong Kong
- Over 125,000 miles durability proven on single units
- US introduction 2001
- Demonstration programs on transit buses and dump trucks

